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Implications of Griffith’s condition on crack growth
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We prove that antiplane crack growth governed by the Griffith’s condition and the diffusion-limited-
aggregation (DLA) growth law is equivalent to the dielectric-breakdown model with cutoffs on the gra-
dients, introduced by Arian et al. [Phys. Rev. Lett. 63, 2005 (1989)]. We conclude that the crack will
evolve from DLA-type patterns (at small sizes) into spiky structures (at large sizes). The same con-

clusion holds for general crack growth.

PACS number(s): 68.70. +w, 62.20.Mk, 82.65.Dp

Since the pioneering work of Mandelbrot, Passoja, and
Paulley [1] the efforts made to understand fracture as a
growth process have been continuously increasing. Many
crack-growth models have been introduced and some
significant achievements have been attained [1-7]. But
we do not have a deep understanding of fracture process.

In [8] Arian et al. introduced the dielectric breakdown
(DB) models with lower cutoffs, which represent realistic
situations in some DB and some viscous fingering experi-
ments. In this Brief Report, we show that the same situa-
tion exists in crack growth.

Griffith [9,10] was the first to apply thermodynamics to
fracture, to our knowledge. He considered a crack in a
brittle material. Based on the law of conservation of en-
ergy, he reasoned that during an increment of crack ex-
tension da there can be no change in the total energy E
composed of the sum of the potential energy of deforma-
tion IT and the surface energy S, i.e.,

dE=dIl+dS=0. (1)
Equation (1) can be written as
G=G,, ()

where G = —dIl/da is known as the energy release rate
and G, =dS /da is a characteristic of the material. Equa-
tion (2) represents the fracture criterion.

Now we consider a two-dimensional linear elastic anti-
plane system, defined on the lattice, under a fixed-
displacement boundary condition. Antiplane crack
growth is governed by the Laplace equation [2,5,10]

Au=0, (3)

where u =u (x,y) is the antiplane displacement field.

We break a center bond as the initial crack. We shall
assume that crack growth is slow enough to allow the
stresses to relax in such a way that the material is always
at equilibrium.

The free energy of the system in the continuum limit is

[11]
F=iff|Vu|2dx dy , @)
2
where A is the Lamé coefficient. From Egs. (3) and (4) we
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find that this antiplane problem is equivalent to a dielec-
tric breakdown, though some differences between these
two models exist [2,5]. Therefore, in the following we
shall make much use of DB models.

We define the energy release rate G; and the growth
probability P; for each growth bond i. The diffusion-
limited-aggregation (DLA) growth law [12,13] leads to

Pi(xvi, (5)

where V, = |(n-Vu),|.
Combining the Griffith’s condition and the DLA
growth law, we have

0, G;<G,
6)
\f
P, = ~ v G >G,
G, 2G,

Halsey [14] has derived an identity for the change in the
total energy of dielectric breakdown if the surface of the
cluster moves by a small amount. This is

-1 2 '
se=— [ dw fw)[Pw)], (7)

where —P(w)=E(w)-n(w) is the normal electric field at
w on the surface of the cluster, and f(w) is the normal
change in the surface position at w.

In two dimensions if a particle lands at w’, the change
in the surface is

fo(w)=ka?s(w —w') , (8)

where k is a numerical constant and a is the size of the in-
dividual particles in the cluster.
Substituting Eq. (8) into Eq. (7) yields
1
8
1

=—ka’[E(w’)-n(w")]?. )
8w

de=—ka*[P(w')]?

Applying Eq. (9) to the antiplane crack-growth problem,
we have
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G, <8¢, xV?, (10
0, T,<T,
where V,=|(n-Vu),|. T (16)
Using Eq. (10), Eq. (6) can be written as P,= i T>T
E T 1 c
T,2T, l
0, V,<V.
v. . (1mn We can use multifractal theory to analyze this problem
Pi=\—(—, V;2V, [8,15]. There are R/‘“da growth bonds, each with
2V growth probability R ~ ¢, giving
v,2v

c

Thus from Eq. (11) we find that the model is equivalent
to the dielectric breakdown model with cutoffs on the
gradients, introduced by Arian et al. [8]. From their
theoretical analysis and simulations, we deduce that the
crack will evolve from DLA-type patterns (at small sizes)
into spiky structures (at large sizes).

We next consider general crack growth, which is
governed by the Lamé equation [11]

pAu+(A+pu)V(V-u)=0, (12)

where u is the vectorial displacement field, A and p are
the Lamé coefficients.

The DLA growth law [12,13] leads to a growth speed
v, that is proportional to the tangential tensions 7 at the
traction—free-crack surfaces [4], i.e.,

v, T . (13)

Combining the Griffiths’ condition and Eq. (13), we
have

0, G<G,
U7, 626, - (14)

We further consider a two-dimensional elastic medium
under a fixed-displacement boundary condition, which is
described as a triangular lattice with central forces be-
tween nearest-neighbors, corresponding to A=y in the
continuum limit [4,6,7]. The growth probability of a
growth bond is a function of the stress T stored in that
bond, i.e., P(T)=f(T). The DLA growth law leads to

P(T)xT . (15)
From (14)

[RI@-aga=1. (17)

Applying the method of steepest descents to Eq. (17), it
follows that the great majority of the growth takes place
on the growth bonds with ay=f(a,)=D(g =1). There-
fore, if

(18)
the growth is not affected by T,. So in this case the

growth patterns resemble closely DLA clusters, with
D =1.51 and D(g=1)=1 [6]. Since 3; =4 T; =R ™"

[8], amin=2D —1 [16], Eq. (18) can be written as
R <R, , (19)
1/(D —ay—1)
where R, < T, P77 When R > R, the growth will

take place on the growth bonds with P,,, which means
that the growth will take place at the tips and the cluster
will evolve into a spiky structure.

The growth patterns of the model resemble closely that
of the crack-growth model introduced by Pla et al. [7],
where the growth probability is given by

P(T)<T[1+(T/Ty)" 1] (g>>1) .

In conclusion, crack growth governed by the Griffith
condition and the DLA growth law will evolve from
DLA-type patterns (at small sizes) into spiky structures
(at large sizes), which can be used to explain the appear-
ance of long and stringy cracks in many fracture process-
es.
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